Search Help
Global Change Master Directory (GCMD)
AM3 - The Atmospheric component of the GFDL coupled model CM3
Entry ID: GFDL_AM3

Abstract: AM3 (Donner et al., 2011), the atmospheric component of the GFDL coupled model CM3, was designed with an awareness of key emerging issues in climate science, including aerosol-cloud interactions in climate and climate change, chemistry-climate feedbacks, land and ocean carbon cycles and their interactions with climate change, and decadal prediction. It is GFDL's first global atmospheric model to include cloud-aerosol interactions, with 20 interactive aerosol species. AM3 includes interactive tropospheric and stratospheric chemistry (85 species). AM3 uses emissions to drive its chemistry and aerosols. Its inclusion of stratospheric chemistry and dynamics will enable possible interactions between the stratosphere and troposphere on interannual scales to be included in future studies of decadal predictability. Its stratosphere has increased vertical resolution over AM2, with the uppermost level at about 1 Pascal. AM3's improved simulation of Amazon precipitation will enhance future coupling into an earth-system model.

AM3 uses a cubed-sphere implementation of the finite-volume dynamical core. Earth's atmosphere is represented as a cube with six rectangular faces. There is no singularity associated with the north and south poles as with the spherical representation. Computationally, the core is highly scalable and efficient at advecting the large number of tracers associated with AM3's chemistry and aerosols.

AM3 uses physically based aerosol activation (Ming et al., 2006) to form cloud droplets. All cloud parameterizations in AM2 were either replaced or augmented to include sub-grid distributions of vertical velocity required for these activation calculations. Sub-grid distributions of vertical velocity are included in AM3's stratiform clouds (Golaz et al., 2011); deep convection (Donner et al., 2001, and Wilcox and Donner, 2007) represented by an ensemble of plumes with mass fluxes and vertical velocities, simple bulk microphysics, and mesoscale updrafts and downdrafts; and shallow convection after Bretherton et al. (2004, Mon. Wea. Rev.) with buoyancy sorting, entraining plumes and vertical velocity.

Related URL
Description: Download the AM3 model code.

ISO Topic Category

Access Constraints
The code for this model is publicly available. User registration is required.

Coupled models
Sea ice

Phone: 609-452-6500
Fax: 609-987-5063
Email: help at
Email: GFDL.Climate.Model.Info at
Contact Address:
Geophysical Fluid Dynamics Laboratory/NOAA
Princeton University
201 Forrestal Road
Campus/Rte. 1
P.O. Box 308
City: Princeton
Province or State: NJ
Postal Code: 08542
Country: USA

Phone: 301-851-8113
Email: Tyler.B.Stevens at
Contact Address:
5700 Rivertech Court
City: Riverdale
Province or State: MD
Postal Code: 20737
Country: USA

Donner, Leo J., Bruce Wyman, Richard S Hemler, Larry W Horowitz, Yi Ming, Ming Zhao, J-C Golaz, Paul Ginoux, Shian-Jiann Lin, M Daniel Schwarzkopf, John Austin, G Alaka, W F Cooke, Thomas L Delworth, Stuart Freidenreich, C Tony Gordon, Stephen M Griffies, Isaac M Held, William J Hurlin, Stephen A Klein, Thomas R Knutson, Amy R Langenhorst, H C Lee, Y Lin, B I Magi, Sergey Malyshev, P C D Milly, Vaishali Naik, Mary Jo Nath, R Pincus, Jeff J Ploshay, V Ramaswamy, Charles J Seman, Elena Shevliakova, Joseph J Sirutis, William F Stern, Ronald J Stouffer, R John Wilson, Michael Winton, Andrew T Wittenberg, and Fanrong Zeng, July 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 24(13), doi:10.1175/2011JCLI3955.1.

Bretherton, Christopher S., James R McCaa, Herve Grenier, 2004: A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Monthly Weather Review, 132, 864-882.

Donner, Leo J., Charles J Seman, Richard S Hemler, and Song-Miao Fan, 2001: A Cumulus Parameterization Including Mass Fluxes, Convective Vertical Velocities, and Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General Circulation model. Journal of Climate, 14(16), 3444-3463.

Golaz, J-C, M Salzmann, Leo J Donner, Larry W Horowitz, Yi Ming, and Ming Zhao, July 2011: Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3.Journal of Climate, 24(13), DOI:10.1175/2010JCLI3945.1.

Ming, Yi, V Ramaswamy, Leo J Donner, and V T J Phillips, 2006: A new parameterization of cloud droplet activation applicable to general circulation models. Journal of the Atmospheric Sciences, 63(4), DOI:10.1175/JAS3686.1.

Wilcox, E M., and Leo J Donner, 2007: The Frequency of Extreme Rain Events in Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model. Journal of Climate, 20(1), DOI:10.1175/JCLI3987.1
Extended Metadata Properties
(Click to view more)

Creation and Review Dates
SERF Creation Date: 2012-06-05
SERF Last Revision Date: 2018-06-26